Hudson Park High School

GRADE 10 MATHEMATICS

November Paper 2

Marks

100

Time : 2 hours

Examiner: SLT

<u>Date</u>

November 2020

Moderator(s)

: FRD PHL CYT GWS

INSTRUCTIONS

- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. <u>NB</u> Leave <u>2 lines</u> open between each of your answers.
- 4. NB Fill in the details requested on the front of this Question Paper and the Answer Booklet.
 - Hand in your submission in the following manner:
 Question Paper (on top)
 Answer Booklet (below)
 - o Do not staple your Question Paper and Answer Booklet together.
- 5. Employ relevant formulae and show all working out. Answers alone may not be awarded full marks.
- 6. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 8. If (Euclidean) Geometric statements are made, reasons must be stated appropriately.

1. A group of Grade 10's was surveyed about their latest Mathematics Test result.

The results were organized as follows:

Test result %	No of learners
$40 < x \le 50$	12
$50 < x \le 60$	23
$60 < x \le 70$	48
$70 < x \le 80$	31
$80 < x \le 90$	16
$90 < x \le 100$	9

- 1.1. How many learners were surveyed? (1)
- 1.2. Estimate the average result for this group of learners. (3)
- 1.3.1. State the position of the 65th percentile. (1)
- 1.3.2. In which interval will the 65th percentile lie? (1)

[6]

2. A supermarket recorded the number of cupcakes sold on consecutive days.

The results were recorded and arranged into ascending order:

10 11 12 13 16 17 18 20 20 22 23 24 25
--

For this data:

2.1. Determine the

2.2.1.

2.2.2.

2.3.

2.1.1. range
2.1.2. mode
Write down the five number summary, clearly labeling the values.
Hence draw a box-and-whisker diagram.
Calculate the semi-interquartile range.
(1)
(2)

[7]

3. C(-4; -3), D(-1; d), B(b; -1) and A(1; 2). AC || DE and D is the midpoint of BC.

3.4.1. Calculate the gradients of

(a) BC

(b) AB

3.4.2. Prove that BC \perp AB. (2)

3.5. If A, C and F(f; -10) (not shown in the diagram) are collinear, calculate the value of f. (4)

[14]

4.1. OM \perp LN and MLO = 90°.

Determine TWO expressions for $\tan \widehat{M}$ in terms of LM, MN, NO, OM, LO and/or LN. (2)

4.2. If $x = 17^{\circ}$, calculate:

4.2.1.
$$1 - \sin^2 3x$$
 (1)

4.2.2.
$$5 \sec x + 3$$
 (1)

4.3. Solve for x:

4.3.1.
$$12^2 = 10^2 + 11^2 - 2.10.11.\cos x$$
 $x \in (0^\circ; 90^\circ)$ (2)

4.3.2.
$$\frac{\sin 5x}{8} = \frac{\sin 120^{\circ}}{11}$$
 $5x \in (0^{\circ}; 90^{\circ})$ (3)

4.3.3.
$$5-2\cot x=1$$
 $x \in (0^\circ; 90^\circ)$ (3)

[12]

CALCULATORS MAY NOT BE USED IN THIS QUESTION

5.1.1. Sketch the special diagram used when dealing with:

(a)
$$30^{\circ}$$
 and 60° (1)

(b)
$$45^{\circ}$$

(c)
$$0^{\circ}$$
 and 90° (1)

5.1.2. Now use your diagrams to determine

(a)
$$\tan 30^{\circ}$$

(b)
$$\cos 45^{\circ}$$

(c)
$$\cot 90^{\circ}$$

5.2. Given •
$$\csc \theta = -\frac{5}{3}$$

• $\theta \in (90^\circ; 270^\circ)$

5.2.1. Explain why
$$\theta$$
 will be an angle in Quadrant 3 (180° < θ < 270°). (2)

5.2.2. Now, determine the values of a, b and c in the following diagram, where P(a; b) and OP = c:

(3)

5.2.3. Hence, determine:
$$\cos \theta$$
. (1)

5.3. If: $\tan 16^\circ = k$, where k > 0, use an appropriate diagram to determine $\sin 16^\circ$ in terms of k. (3)

[15]

6. AX \perp XC, $\widehat{XBC} = 90^{\circ}$, BC = 10, AC = 25 and $\widehat{BXC} = 40^{\circ}$.

Calculate XĈA. [5]

OUESTION 7

7. Sketched are the graphs of

$$f(x) = a \cos x$$
 and $g(x) = \tan x - b$

for $x \in [0^{\circ}; 270^{\circ}]$.

7.1. Write down the

7.1.1. period of
$$g$$
 (1)

7.1.2. amplitude of
$$f$$
 (1)

7.2. Use the graphs to solve for x, where $x \in [0^\circ; 270^\circ]$:

7.2.1.
$$\tan x - b > 0$$
 (2)

7.2.2.
$$f(x) \times g(x) \le 0$$
 (2)

7.3. Write down the values of

7.3.1.
$$a$$
 (1)

7.3.2.
$$b$$
 (1)

[8]

$$A = \pi r h_s \qquad V = \frac{1}{3} A h$$

8. The solid shown in the diagram consists of a (right circular) cylinder and a (right circular) cone glued together.

The cylinder and cone have the same radius, r = 3 cm.

The perpendicular heights of the cone and cylinder are $h_{cone} = 4$ cm and $h_{cylinder} = 3.5$ cm, respectively.

Calculate the:

- 8.1. slant height of the cone, h_s (1)
- 8.2. volume of the solid (3)
- 8.3. total surface area of the solid. (4)

[8]

9. ABCD is a (convex) kite with AB = AD and BC = DC. $\widehat{AB0} = 40^{\circ}$, BO = 5 and AK || BD.

Determine

9.1.	ADB	(2)
9.2.	$\widehat{O}_\mathtt{1}$	(1)
9.3.	AO	(2)
9.4.	area ΔAOB	(1)
9.5.	area ΔKDO	(4)
		[10]

10. In the given diagram, DE \parallel BC.

- 10.1. Complete: $\triangle ABC \parallel \Delta \dots$ (1)
- 10.2. Prove (10.1) (3)
- 10.3. Now, if AE = 5, EC = 3 and BC = 7, calculate the length of DE. (2)
 - [6]

11. ABCD is a parallelogram and DM = BN.

11.1.1. Prove that $\Delta DMA \equiv \Delta BNC$. (4)

11.1.2. Hence, prove that $AM \parallel CN$. (3)

11.2. Prove that AMCN is a parallelogram (2)

TOTAL 100